Minimizar el impacto, maximizar los retornos

En el siglo II después de Cristo, durante el último periodo del reinado del emperador romano Trajano, se construyó el acueducto que llevaba el agua a la ciudad de Segovia. En la misma época y en la ciudad de Roma se finalizaba la construcción del acueducto Aqua Traiana, a lo largo de la margen izquierda del río Tíber. Con ello se completaban las 10 obras que abastecían de agua a la ciudad. Las mejores aguas se reservaban para beber, mientras que las de menor calidad, se usaban para los baños. Mientras, los residuos se vertían a la red de alcantarillado situadas por debajo de las calles de la ciudad y que terminaban en la cloaca máxima.

Casi 2.000 años después, mantenemos esta lógica de captar el agua lejos de la ciudad para, a continuación, transportarla a grandes distancias, mediante enormes infraestructuras, y, finalmente, distribuirla. Una vez usada, nos deshacemos del agua rápidamente y la desolvemos a los ríos (o el mar).

Esta vieja tradición de "producir-usar-tirar" conlleva un alto consumo energético, y en cambio, un mínimo aprovechamiento de los recursos que podría proporcionar. Justo en la lógica opuesta, los proyectos europeos de innovación y desarrollo, liderados por Aqualia como el FP7 AllGas, el LIFE Memory y el iGO2020 RunDive, demuestran la transformación sostenible del agua residual en agua reutilizable, a la vez que produce biomasa, bioenergía, biofertilizantes o bioplastícos.

Este nuevo paradigma en el sistema de abastecimiento de agua se afianza, además, en la gestión inteligente de este recurso, que mejora los canales de comunicación con los consumidores para una gestión más eficiente del ciclo integral del agua. Con la información a tiempo real de las demandas y de las características del agua, se pueden gestionar los requerimientos de cantidad y calidad de los propios ciudadanos.

Un proyecto emblemático liderado por Aqualia, bajo el patrocinio del programa LIFE de la Unión Europea, es el Memory. La clave del proceso está en los AnMBRs (biorreactores de membrana anaeróbicos) que convierten el agua residual en energía, obteniendo un eficiente final apropiado para su reutilización con balance energético positivo, y una huella cero de emisión de carbono.

Otro proyecto en el que Aqualia es socio industrial mayoritario, el iGO2020 Incover, despliega tres plantas piloto de
valor añadido para el tratamiento de aguas residuales en tres entornos: procedentes del alcantarillado urbano, instalaciones agrícolas y textiles (industrias alimentarias). Estas plantas generan valor con la recuperación química de fertilizantes (nitro y fósforo) y reutilización de agua a través de absorción, biotecnología basada en sistemas de humedales y carbonización hídrometatal.

En junio del año 2017, junto con diferentes socios de Suedia, Países Bajos y Bélgica, Aqualia lanzó su último proyecto – H2O20 Run4Life (Recuperación y utilización de nutrientes para fertilizantes de bajo impacto). El objetivo principal de este proyecto en concreto es la recuperación de nutrientes de los residuos domésticos para su aplicación en agricultura, y del agua de residuo.

Run4Life presenta una estrategia alternativa para aumentar las tasas de recuperación de nutrientes, basándose en un tratamiento descentralizado de las aguas negras (agua de descarga de los cuartos de baño), de las aguas grises (resto de agua doméstica de descarga) y residuos orgánicos de cocina. En esta novedosa investigación se combinan diferentes tecnologías de última generación, tales como inodoros de vacío de bajo consumo, que producen aguas negras muy concentradas, digestión anaérea hipertérmica, eólicos de etapa única para la producción de fertilizantes, y sistemas bioplasmoquímicos para la recuperación de nitrógeno. El proyecto, que ya está en marcha, continuará hasta junio de 2021.

Otra forma revolucionaria de reciclar agua y aprovechar la energía del agua residual es la desalización microbiana, para la que se está construyendo el primer prototipo dentro del proyecto H2O20 Milos – que se localizara en la planta de desalinización inversa que Aqualia opera en el municipio de Donia (Albacete).

En el proceso, desarrollado por el instituto de investigación IMDEA (Instituto Madrileño de Estudios Avanzados), dependiente del CSIC, una célula de desalinización microbiana utiliza la materia orgánica de los efluente como energía para que las bacterias muevan electrones. Así se logra una reducción significativa de sal, sin la necesidad de electricidad o presión.

Los resultados del prototipo desarrollado son revolucionarios, puesto que apuntan a que el consumo eléctrico requerido en las instalaciones -habitualmente en procesos de camisaría convencional se requieren 4 kilowatt hora por metro cúbico- puede reducirse diez veces, produciendo agua desalminizada a la vez que se recicla el agua de descarga.

Todos estos proyectos, que desarrolla el equipo de investigadores del departamento de Innovación y Tecnología de Aqualia, comparten la primera regla de la sostenibilidad: ‘minimizar el impacto, maximizar los retornos’, obteniendo el máximo a partir de materias primas tan preciosas como el agua y los residuos.

Conscientes del potencial de esta línea de investigación, Aqualia ha reforzado su departamento de I+D en los últimos años, y gracias al apoyo de los programas de la UE, la inversión anual de la compañía en este campo es de millones de euros.