

Photosynthetic biogas upgrading in wastewater treatment plants

María del Rosario Rodero^{1,3}, Raquel Lebrero^{1,3}, Raúl Cano², Esteban Serrano², Enrique Lara², Zouhayr Arbib², Raúl Muñoz^{*1,3}

1- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. 2- FCC Aqualia, Av. del Camino de Santiago 40, 28050 Madrid, Spain

3- Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain

* Author for correspondence: mutora @iq.uva.es

INTRODUCTION

Biogas, which mainly consists of CH₄ (40-75%), CO₂ (15-60%) and H₂S (0.005-2%), constitutes a valuable renewable energy source able to reduce current dependence on fossil fuels. In this context, **CO₂ removal** increases the specific calorific value and reduces biogas costs of compression and transportation, while **H₂S removal** is mandatory due to its toxic and corrosive nature [1].

Photosynthetic biogas upgrading represents a cost-effective and environmentally friendly platform for the removal of both pollutants. This process is based on the consumption of CO_2 by microalgae via photosynthesis and the concomitant oxidation of H_2S to sulfate by sulfur-oxidizing bacteria using the oxygen photosynthetically produced [2]. Moreover, **domestic wastewater (DWW) or centrate** can be used as nutrient source to support algal-bacterial growth [3].

UVa

018, 4th - 6th December ,

Figure 2. Influence of the L/G ratio on biogas upgrading performance at biogas flowrate of 276 (black), 370 (white) and 459 (grey) L h⁻¹ during stage I (a), stage II (b) and stage III (c).

RESULTS AND DISCUSSION

Figure 3. Wastewater removal efficiencies in the high rate algal pond during stage I (white), II (black) and III (grey)

Table 2. Effluent composition under steady state conditions

Effluent composition	DWW, HRT= 3.5 days	DWW, HRT = 8 days	Centrate, HRT = 73 days
COD (mg L ⁻¹)	99.4±31.3	65.0±21.7	123.8±0
$N-NH_4^+$ (mg-N L ⁻¹)	3.1±1.7	1.0±1.1	0±0
N-NO ₂ (mg-N L ⁻¹)	0.8±0.5	0.4±0.2	13.3±11.7
N-NO ₃ (mg-N L ⁻¹)	2.0±1.2	9.6±0.5	38.1±7.4
P-PO ₄ ³⁻ (mg L ⁻¹)	1.0±0.5	1.3±0.3	19.9±5.4

CONCLUSIONS

- ✓ Negligible influence of the hydraulic retention time (HRT) in the HRAP and the biogas flowrate (G) in the absorption column on the biogas upgrading performance.
- ✓ Despite higher L/G ratios supported higher CO₂ and H₂S removals, an increase of N₂ and O₂ stripping was observed, which negatively impacted CH₄ concentration in the upgraded biogas.
- \checkmark An increase in CO₂ and H₂S removals was obtained using centrate instead of domestic wastewater due to the higher alkalinity and pH of the influent.
- Y To the best of our knowledge, this work demonstrated for the first time the capacity of algal-bacterial systems for the simultaneous biogas upgrading and wastewater treatment at semi-industrial scale.

References:

- [1] Toledo-Cervantes A., Serejo M., Blanco S., Pérez R., Lebrero R., Muñoz R., (2016). Photosynthetic biogas upgrading to biomethane: Boosting nutrient recovery via biomass productivity control. Algal Res.17, 46-52.
- [2] Marín D., Posadas E., Cano P., Pérez V., Blanco S., Lebrero R. and Muñoz R. (2018). Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor. Bioresour. Technol. 263, 58-66
- [3] Serejo M.L., Posadas E., Boncz M.A., Blanco S., García-Encina P., Muñoz R. (2015) Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ. Sci. Technol. 49,3228–3236

Acknowledgements:

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 689242.

